https://github.com/RicherMans/SAT.
Transformers have emerged as a prominent model framework for audio tagging (AT), boasting state-of-the-art (SOTA) performance on the widely-used Audioset dataset. However, their impressive performance often comes at the cost of high memory usage, slow inference speed, and considerable model delay, rendering them impractical for real-world AT applications. In this study, we introduce streaming audio transformers (SAT) that combine the vision transformer (ViT) architecture with Transformer-Xl-like chunk processing, enabling efficient processing of long-range audio signals. Our proposed SAT is benchmarked against other transformer-based SOTA methods, achieving significant improvements in terms of mean average precision (mAP) at a delay of 2s and 1s, while also exhibiting significantly lower memory usage and computational overhead. Checkpoints are publicly available