Multi-task learning (MTL) has gained significant popularity in recommendation systems as it enables the simultaneous optimization of multiple objectives. A key challenge in MTL is the occurrence of negative transfer, where the performance of certain tasks deteriorates due to conflicts between tasks. Existing research has explored negative transfer by treating all samples as a whole, overlooking the inherent complexities within them. To this end, we delve into the intricacies of samples by splitting them based on the relative amount of positive feedback among tasks. Surprisingly, negative transfer still occurs in existing MTL methods on samples that receive comparable feedback across tasks. It is worth noting that existing methods commonly employ a shared-embedding paradigm, and we hypothesize that their failure can be attributed to the limited capacity of modeling diverse user preferences across tasks using such universal embeddings. In this paper, we introduce a novel paradigm called Shared and Task-specific EMbeddings (STEM) that aims to incorporate both shared and task-specific embeddings to effectively capture task-specific user preferences. Under this paradigm, we propose a simple model STEM-Net, which is equipped with shared and task-specific embedding tables, along with a customized gating network with stop-gradient operations to facilitate the learning of these embeddings. Remarkably, STEM-Net demonstrates exceptional performance on comparable samples, surpassing the Single-Task Like model and achieves positive transfer. Comprehensive evaluation on three public MTL recommendation datasets demonstrates that STEM-Net outperforms state-of-the-art models by a substantial margin, providing evidence of its effectiveness and superiority.