https://2000zrl.github.io/soke/.
Sign language is a visual language that encompasses all linguistic features of natural languages and serves as the primary communication method for the deaf and hard-of-hearing communities. While many studies have successfully adapted pretrained language models (LMs) for sign language translation (sign-to-text), drawing inspiration from its linguistic characteristics, the reverse task of sign language generation (SLG, text-to-sign) remains largely unexplored. Most existing approaches treat SLG as a visual content generation task, employing techniques such as diffusion models to produce sign videos, 2D keypoints, or 3D avatars based on text inputs, overlooking the linguistic properties of sign languages. In this work, we introduce a multilingual sign language model, Signs as Tokens (SOKE), which can generate 3D sign avatars autoregressively from text inputs using a pretrained LM. To align sign language with the LM, we develop a decoupled tokenizer that discretizes continuous signs into token sequences representing various body parts. These sign tokens are integrated into the raw text vocabulary of the LM, allowing for supervised fine-tuning on sign language datasets. To facilitate multilingual SLG research, we further curate a large-scale Chinese sign language dataset, CSL-Daily, with high-quality 3D pose annotations. Extensive qualitative and quantitative evaluations demonstrate the effectiveness of SOKE. The project page is available at