This paper demonstrates an approach for learning highly semantic image representations without relying on hand-crafted data-augmentations. We introduce the Image-based Joint-Embedding Predictive Architecture (I-JEPA), a non-generative approach for self-supervised learning from images. The idea behind I-JEPA is simple: from a single context block, predict the representations of various target blocks in the same image. A core design choice to guide I-JEPA towards producing semantic representations is the masking strategy; specifically, it is crucial to (a) predict several target blocks in the image, (b) sample target blocks with sufficiently large scale (occupying 15%-20% of the image), and (c) use a sufficiently informative (spatially distributed) context block. Empirically, when combined with Vision Transformers, we find I-JEPA to be highly scalable. For instance, we train a ViT-Huge/16 on ImageNet using 32 A100 GPUs in under 38 hours to achieve strong downstream performance across a wide range of tasks requiring various levels of abstraction, from linear classification to object counting and depth prediction.