This paper introduces a novel Self-supervised Fine-grained Dialogue Evaluation framework (SelF-Eval). The core idea is to model the correlation between turn quality and the entire dialogue quality. We first propose a novel automatic data construction method that can automatically assign fine-grained scores for arbitrarily dialogue data. Then we train \textbf{SelF-Eval} with a multi-level contrastive learning schema which helps to distinguish different score levels. Experimental results on multiple benchmarks show that SelF-Eval is highly consistent with human evaluations and better than the state-of-the-art models. We give a detailed analysis of the experiments in this paper. Our code and data will be published on GitHub.