Deep learning has driven significant progress in object detection using Synthetic Aperture Radar (SAR) imagery. Existing methods, while achieving promising results, often struggle to effectively integrate local and global information, particularly direction-aware features. This paper proposes SAR-Net, a novel framework specifically designed for global fusion of direction-aware information in SAR object detection. SAR-Net leverages two key innovations: the Unity Compensation Mechanism (UCM) and the Direction-aware Attention Module (DAM). UCM facilitates the establishment of complementary relationships among features across different scales, enabling efficient global information fusion. Among them, Multi-scale Alignment Module (MAM) and distinct Multi-level Fusion Module (MFM) enhance feature integration by capturing both texture detail and semantic information. Then, Multi-feature Embedding Module (MEM) feeds back global features into the primary branches, further improving information transmission. Additionally, DAM, through bidirectional attention polymerization, captures direction-aware information, effectively eliminating background interference. Extensive experiments demonstrate the effectiveness of SAR-Net, achieving state-of-the-art results on aircraft (SAR-AIRcraft-1.0) and ship datasets (SSDD, HRSID), confirming its generalization capability and robustness.