We consider Bayesian classification with Gaussian processes (GPs) and define robustness of a classifier in terms of the worst-case difference in the classification probabilities with respect to input perturbations. For a subset of the input space $T\subseteq \mathbb{R}^m$ such properties reduce to computing the infimum and supremum of the classification probabilities for all points in $T$. Unfortunately, computing the above values is very challenging, as the classification probabilities cannot be expressed analytically. Nevertheless, using the theory of Gaussian processes, we develop a framework that, for a given dataset $\mathcal{D}$, a compact set of input points $T\subseteq \mathbb{R}^m$ and an error threshold $\epsilon>0$, computes lower and upper bounds of the classification probabilities by over-approximating the exact range with an error bounded by $\epsilon$. We provide experimental comparison of several approximate inference methods for classification on tasks associated to MNIST and SPAM datasets showing that our results enable quantification of uncertainty in adversarial classification settings.