In this paper, we propose an effective scene text recognition method using sparse coding based features, called Histograms of Sparse Codes (HSC) features. For character detection, we use the HSC features instead of using the Histograms of Oriented Gradients (HOG) features. The HSC features are extracted by computing sparse codes with dictionaries that are learned from data using K-SVD, and aggregating per-pixel sparse codes to form local histograms. For word recognition, we integrate multiple cues including character detection scores and geometric contexts in an objective function. The final recognition results are obtained by searching for the words which correspond to the maximum value of the objective function. The parameters in the objective function are learned using the Minimum Classification Error (MCE) training method. Experiments on several challenging datasets demonstrate that the proposed HSC-based scene text recognition method outperforms HOG-based methods significantly and outperforms most state-of-the-art methods.