Federated Instruction Tuning (FIT) has shown the ability to achieve collaborative model instruction tuning among massive data owners without sharing private data. However, it still faces two key challenges, i.e., data and resource heterogeneity. Due to the varying data distribution and preferences among data owners, FIT cannot adapt to the personalized data of individual owners. Moreover, clients with superior computational abilities are constrained since they need to maintain the same fine-tuning architecture as the weaker clients. To address these issues, we propose a novel Personalized Federated Instruction Tuning (PerFIT) framework based on architecture search. Specifically, PerFIT allows each client to search for a personalized architecture by expanding the trainable parameter space of the global model followed by pruning the parameters to the original state. This procedure allows personalized instruction fine-tuning within expanded parameter spaces, concurrently preserving the same number of trainable parameters. Furthermore, to release the abilities of heterogeneous computational resources and enhance the performance of personalization on local data, we exploit personalized parameter-wise aggregation. The evaluation with multiple LLMs non-IID scenarios demonstrates that compared to the state-of-the-art FIT methods, our approach can achieve up to a 23% decrease in perplexity.