In next-generation Internet services, such as Metaverse, the mixed reality (MR) technique plays a vital role. Yet the limited computing capacity of the user-side MR headset-mounted device (HMD) prevents its further application, especially in scenarios that require a lot of computation. One way out of this dilemma is to design an efficient information sharing scheme among users to replace the heavy and repetitive computation. In this paper, we propose a free-space information sharing mechanism based on full-duplex device-to-device (D2D) semantic communications. Specifically, the view images of MR users in the same real-world scenario may be analogous. Therefore, when one user (i.e., a device) completes some computation tasks, the user can send his own calculation results and the semantic features extracted from the user's own view image to nearby users (i.e., other devices). On this basis, other users can use the received semantic features to obtain the spatial matching of the computational results under their own view images without repeating the computation. Using generalized small-scale fading models, we analyze the key performance indicators of full-duplex D2D communications, including channel capacity and bit error probability, which directly affect the transmission of semantic information. Finally, the numerical analysis experiment proves the effectiveness of our proposed methods.