Given a target image as query, person re-identification systems retrieve a ranked list of candidate matches on a per-camera basis. In deployed systems, a human operator scans these lists and labels sighted targets by touch or mouse-based selection. However, classical re-id approaches generate per-camera lists independently. Therefore, target identifications by operator in a subset of cameras cannot be utilized to improve ranking of the target in remaining set of network cameras. To address this shortcoming, we propose a novel sequential multi-camera re-id approach. The proposed approach can accommodate human operator inputs and provides early gains via a monotonic improvement in target ranking. At the heart of our approach is a fusion function which operates on deep feature representations of query and candidate matches. We formulate an optimization procedure custom-designed to incrementally improve query representation. Since existing evaluation methods cannot be directly adopted to our setting, we also propose two novel evaluation protocols. The results on two large-scale re-id datasets (Market-1501, DukeMTMC-reID) demonstrate that our multi-camera method significantly outperforms baselines and other popular feature fusion schemes. Additionally, we conduct a comparative subject-based study of human operator performance. The superior operator performance enabled by our approach makes a compelling case for its integration into deployable video-surveillance systems.