This paper investigates the theory of robustness against adversarial attacks. We focus on randomized classifiers (\emph{i.e.} classifiers that output random variables) and provide a thorough analysis of their behavior through the lens of statistical learning theory and information theory. To this aim, we introduce a new notion of robustness for randomized classifiers, enforcing local Lipschitzness using probability metrics. Equipped with this definition, we make two new contributions. The first one consists in devising a new upper bound on the adversarial generalization gap of randomized classifiers. More precisely, we devise bounds on the generalization gap and the adversarial gap (\emph{i.e.} the gap between the risk and the worst-case risk under attack) of randomized classifiers. The second contribution presents a yet simple but efficient noise injection method to design robust randomized classifiers. We show that our results are applicable to a wide range of machine learning models under mild hypotheses. We further corroborate our findings with experimental results using deep neural networks on standard image datasets, namely CIFAR-10 and CIFAR-100. All robust models we trained models can simultaneously achieve state-of-the-art accuracy (over $0.82$ clean accuracy on CIFAR-10) and enjoy \emph{guaranteed} robust accuracy bounds ($0.45$ against $\ell_2$ adversaries with magnitude $0.5$ on CIFAR-10).