Non-linear source separation is a challenging open problem with many applications. We extend a recently proposed Adversarial Non-linear ICA (ANICA) model, and introduce Cramer-Wold ICA (CW-ICA). In contrast to ANICA we use a simple, closed--form optimization target instead of a discriminator--based independence measure. Our results show that CW-ICA achieves comparable results to ANICA, while foregoing the need for adversarial training.