Claim detection and verification are crucial for news understanding and have emerged as promising technologies for mitigating misinformation in news. However, most existing work focus on analysis of claim sentences while overlooking crucial background attributes, such as the claimer, claim objects, and other knowledge connected to the claim. In this work, we present NewsClaims , a new benchmark for knowledge-aware claim detection in the news domain. We re-define the claim detection problem to include extraction of additional background attributes related to the claim and release 529 claims annotated over 103 news articles. In addition, NewsClaims aims to benchmark claim detection systems in emerging scenarios, comprising unseen topics with little or no training data. Finally, we provide a comprehensive evaluation of various zero-shot and prompt-based baselines for this new benchmark.