https://github.com/BaoGuangYin/PmcmFL.
In real-world scenarios, multimodal federated learning often faces the practical challenge of intricate modality missing, which poses constraints on building federated frameworks and significantly degrades model inference accuracy. Existing solutions for addressing missing modalities generally involve developing modality-specific encoders on clients and training modality fusion modules on servers. However, these methods are primarily constrained to specific scenarios with either unimodal clients or complete multimodal clients, struggling to generalize effectively in the intricate modality missing scenarios. In this paper, we introduce a prototype library into the FedAvg-based Federated Learning framework, thereby empowering the framework with the capability to alleviate the global model performance degradation resulting from modality missing during both training and testing. The proposed method utilizes prototypes as masks representing missing modalities to formulate a task-calibrated training loss and a model-agnostic uni-modality inference strategy. In addition, a proximal term based on prototypes is constructed to enhance local training. Experimental results demonstrate the state-of-the-art performance of our approach. Compared to the baselines, our method improved inference accuracy by 3.7\% with 50\% modality missing during training and by 23.8\% during uni-modality inference. Code is available at