Properties of molecules are indicative of their functions and thus are useful in many applications. As a cost-effective alternative to experimental approaches, computational methods for predicting molecular properties are gaining increasing momentum and success. However, there lacks a comprehensive collection of tools and methods for this task currently. Here we develop the MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations for molecular property prediction and drug discovery. Specifically, MoleculeKit represents molecules as both graphs and sequences. Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data. Noticeably, we propose and develop novel deep models for learning from molecular graphs and sequences. Therefore, MoleculeKit not only serves as a comprehensive tool, but also contributes towards developing novel and advanced graph and sequence learning methodologies. Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.