In this paper, we focus on the challenges of modeling deformable 3D objects from casual videos. With the popularity of neural radiance fields (NeRF), many works extend it to dynamic scenes with a canonical NeRF and a deformation model that achieves 3D point transformation between the observation space and the canonical space. Recent works rely on linear blend skinning (LBS) to achieve the canonical-observation transformation. However, the linearly weighted combination of rigid transformation matrices is not guaranteed to be rigid. As a matter of fact, unexpected scale and shear factors often appear. In practice, using LBS as the deformation model can always lead to skin-collapsing artifacts for bending or twisting motions. To solve this problem, we propose neural dual quaternion blend skinning (NeuDBS) to achieve 3D point deformation, which can perform rigid transformation without skin-collapsing artifacts. Besides, we introduce a texture filtering approach for texture rendering that effectively minimizes the impact of noisy colors outside target deformable objects. Extensive experiments on real and synthetic datasets show that our approach can reconstruct 3D models for humans and animals with better qualitative and quantitative performance than state-of-the-art methods.