In 5G/6G wireless systems, reconfigurable intelligent surfaces (RIS) can play a role as a passive anchor to enable and enhance localization in various scenarios. However, most existing RIS-aided localization works assume that the geometry of the RIS is perfectly known, which is not realistic in practice due to calibration errors. In this work, we derive the misspecified Cram\'er-Rao bound (MCRB) for a single-input-single-output RIS-aided localization system with RIS geometry mismatch. Specifically, unlike most existing works that use numerical methods, we propose a closed-form solution to the pseudo-true parameter determination problem for MCRB analysis. Simulation results demonstrate the validity of the derived pseudo-true parameters and MCRB, and show that the RIS geometry mismatch causes performance saturation in the high signal-to-noise ratio regions.