Diffusion Models (DMs) have recently set state-of-the-art on many generation benchmarks. However, there are myriad ways to describe them mathematically, which makes it difficult to develop a simple understanding of how they work. In this survey, we provide a concise overview of DMs from the perspective of dynamical systems and Ordinary Differential Equations (ODEs) which exposes a mathematical connection to the highly related yet often overlooked class of energy-based models, called Associative Memories (AMs). Energy-based AMs are a theoretical framework that behave much like denoising DMs, but they enable us to directly compute a Lyapunov energy function on which we can perform gradient descent to denoise data. We then summarize the 40 year history of energy-based AMs, beginning with the original Hopfield Network, and discuss new research directions for AMs and DMs that are revealed by characterizing the extent of their similarities and differences