Open Information Extraction (OIE) aims to extract objective structured knowledge from natural texts, which has attracted growing attention to build dedicated models with human experience. As the large language models (LLMs) have exhibited remarkable in-context learning capabilities, a question arises as to whether the task of OIE can be effectively tackled with this paradigm? In this paper, we explore solving the OIE problem by constructing an appropriate reasoning environment for LLMs. Specifically, we first propose a method to effectively estimate the discrepancy of syntactic distribution between a LLM and test samples, which can serve as correlation evidence for preparing positive demonstrations. Upon the evidence, we introduce a simple yet effective mechanism to establish the reasoning environment for LLMs on specific tasks. Without bells and whistles, experimental results on the standard CaRB benchmark demonstrate that our $6$-shot approach outperforms state-of-the-art supervised method, achieving an $55.3$ $F_1$ score. Further experiments on TACRED and ACE05 show that our method can naturally generalize to other information extraction tasks, resulting in improvements of $5.7$ and $6.8$ $F_1$ scores, respectively.