Masked diffusion models (MDMs) have emerged as a popular research topic for generative modeling of discrete data, thanks to their superior performance over other discrete diffusion models, and are rivaling the auto-regressive models (ARMs) for language modeling tasks. The recent effort in simplifying the masked diffusion framework further leads to alignment with continuous-space diffusion models and more principled training and sampling recipes. In this paper, however, we reveal that both training and sampling of MDMs are theoretically free from the time variable, arguably the key signature of diffusion models, and are instead equivalent to masked models. The connection on the sampling aspect is drawn by our proposed first-hitting sampler (FHS). Specifically, we show that the FHS is theoretically equivalent to MDMs' original generation process while significantly alleviating the time-consuming categorical sampling and achieving a 20$\times$ speedup. In addition, our investigation challenges previous claims that MDMs can surpass ARMs in generative perplexity. We identify, for the first time, an underlying numerical issue, even with the 32-bit floating-point precision, which results in inaccurate categorical sampling. We show that the numerical issue lowers the effective temperature both theoretically and empirically, leading to unfair assessments of MDMs' generation results in the previous literature.