We consider the problem of automatically generating stories in multiple languages. Compared to prior work in monolingual story generation, crosslingual story generation allows for more universal research on story planning. We propose to use Prompting Large Language Models with Plans to study which plan is optimal for story generation. We consider 4 types of plans and systematically analyse how the outputs differ for different planning strategies. The study demonstrates that formulating the plans as question-answer pairs leads to more coherent generated stories while the plan gives more control to the story creators.