Generative models have demonstrated impressive results in vision, language, and speech. However, even with massive datasets, they struggle with precision, generating physically invalid or factually incorrect data. This is particularly problematic when the generated data must satisfy constraints, for example, to meet product specifications in engineering design or to adhere to the laws of physics in a natural scene. To improve precision while preserving diversity and fidelity, we propose a novel training mechanism that leverages datasets of constraint-violating data points, which we consider invalid. Our approach minimizes the divergence between the generative distribution and the valid prior while maximizing the divergence with the invalid distribution. We demonstrate how generative models like GANs and DDPMs that we augment to train with invalid data vastly outperform their standard counterparts which solely train on valid data points. For example, our training procedure generates up to 98 % fewer invalid samples on 2D densities, improves connectivity and stability four-fold on a stacking block problem, and improves constraint satisfaction by 15 % on a structural topology optimization benchmark in engineering design. We also analyze how the quality of the invalid data affects the learning procedure and the generalization properties of models. Finally, we demonstrate significant improvements in sample efficiency, showing that a tenfold increase in valid samples leads to a negligible difference in constraint satisfaction, while less than 10 % invalid samples lead to a tenfold improvement. Our proposed mechanism offers a promising solution for improving precision in generative models while preserving diversity and fidelity, particularly in domains where constraint satisfaction is critical and data is limited, such as engineering design, robotics, and medicine.