Self-supervised video transformer pre-training has recently benefited from the mask-and-predict pipeline. They have demonstrated outstanding effectiveness on downstream video tasks and superior data efficiency on small datasets. However, temporal relation is not fully exploited by these methods. In this work, we explicitly investigate motion cues in videos as extra prediction target and propose our Masked Appearance-Motion Modeling (MAM2) framework. Specifically, we design an encoder-regressor-decoder pipeline for this task. The regressor separates feature encoding and pretext tasks completion, such that the feature extraction process is completed adequately by the encoder. In order to guide the encoder to fully excavate spatial-temporal features, two separate decoders are used for two pretext tasks of disentangled appearance and motion prediction. We explore various motion prediction targets and figure out RGB-difference is simple yet effective. As for appearance prediction, VQGAN codes are leveraged as prediction target. With our pre-training pipeline, convergence can be remarkably speed up, e.g., we only require half of epochs than state-of-the-art VideoMAE (400 v.s. 800) to achieve the competitive performance. Extensive experimental results prove that our method learns generalized video representations. Notably, our MAM2 with ViT-B achieves 82.3% on Kinects-400, 71.3% on Something-Something V2, 91.5% on UCF101, and 62.5% on HMDB51.