This paper introduces the Membership Inference Test (MINT), a novel approach that aims to empirically assess if specific data was used during the training of Artificial Intelligence (AI) models. Specifically, we propose two novel MINT architectures designed to learn the distinct activation patterns that emerge when an audited model is exposed to data used during its training process. The first architecture is based on a Multilayer Perceptron (MLP) network and the second one is based on Convolutional Neural Networks (CNNs). The proposed MINT architectures are evaluated on a challenging face recognition task, considering three state-of-the-art face recognition models. Experiments are carried out using six publicly available databases, comprising over 22 million face images in total. Also, different experimental scenarios are considered depending on the context available of the AI model to test. Promising results, up to 90% accuracy, are achieved using our proposed MINT approach, suggesting that it is possible to recognize if an AI model has been trained with specific data.