Factual inconsistency poses a significant hurdle for the commercial deployment of abstractive summarizers. Under this Large Language Model (LLM) era, this work focuses around two important questions: what is the best way to leverage LLM for factual inconsistency detection, and how could we distill a smaller LLM with both high efficiency and efficacy? Three zero-shot paradigms are firstly proposed and evaluated across five diverse datasets: direct inference on the entire summary or each summary window; entity verification through question generation and answering. Experiments suggest that LLM itself is capable to resolve this task train-free under the proper paradigm design, surpassing strong trained baselines by 2.8% on average. To further promote practical utility, we then propose training strategies aimed at distilling smaller open-source LLM that learns to score the entire summary at once with high accuracy, which outperforms the zero-shot approaches by much larger LLM, serving as an effective and efficient ready-to-use scorer.