https://github.com/jiamiya/HOPE}. % after the paper's acceptance.
Path planning plays a pivotal role in automated parking, yet current methods struggle to efficiently handle the intricate and diverse parking scenarios. One potential solution is the reinforcement learning-based method, leveraging its exploration in unrecorded situations. However, a key challenge lies in training reinforcement learning methods is the inherent randomness in converging to a feasible policy. This paper introduces a novel solution, the Hybrid POlicy Path plannEr (HOPE), which integrates a reinforcement learning agent with Reeds-Shepp curves, enabling effective planning across diverse scenarios. The paper presents a method to calculate and implement an action mask mechanism in path planning, significantly boosting the efficiency and effectiveness of reinforcement learning training. A transformer is employed as the network structure to fuse environmental information and generate planned paths. To facilitate the training and evaluation of the proposed planner, we propose a criterion for categorizing the difficulty level of parking scenarios based on space and obstacle distribution. Experimental results demonstrate that our approach outperforms typical rule-based algorithms and traditional reinforcement learning methods, showcasing higher planning success rates and generalization across various scenarios. The code for our solution will be openly available on \href{GitHub}{