This report presents the development of our speech enhancement system, which includes the use of a recently proposed music separation model, the band-split recurrent neural network (BSRNN), and a MetricGAN-based training objective to improve non-differentiable quality metrics such as perceptual evaluation of speech quality (PESQ) score. Experiment conducted on Interspeech 2021 DNS challenge shows that our BSRNN system outperforms various top-ranking benchmark systems in previous deep noise suppression (DNS) challenges and achieves state-of-the-art (SOTA) result on the DNS-2020 non-blind test set in both offline and online scenarios.