While large pre-trained models have transformed the field of natural language processing (NLP), the high training cost and low cross-lingual availability of such models prevent the new advances from being equally shared by users across all languages, especially the less spoken ones. To promote equal opportunities for all language speakers in NLP research and to reduce energy consumption for sustainability, this study proposes an effective and energy-efficient framework GreenPLM that uses bilingual lexicons to directly translate language models of one language into other languages at (almost) no additional cost. We validate this approach in 18 languages and show that this framework is comparable to, if not better than, other heuristics trained with high cost. In addition, when given a low computational cost (2.5%), the framework outperforms the original monolingual language models in six out of seven tested languages. This approach can be easily implemented, and we will release language models in 50 languages translated from English soon.