As an essential component of dialogue systems, multi-turn response selection aims to pick out the optimal response among a set of candidates to improve the dialogue fluency. In this paper, we investigate three problems of current response selection approaches, especially for generation-based conversational agents: (i) Existing approaches are often formulated as a sentence scoring problem, which does not consider relationships between responses. (ii) Existing models tend to select undesirable candidates that have large overlaps with the dialogue history. (iii) Negative instances in training are mainly constructed by random sampling from the corpus, whereas generated candidates in practice typically have a closer distribution. To address the above problems, we create a new dataset called ConvAI2+ and propose a new response selector called Global-Selector. Experimental results show that Global-Selector trained on ConvAI2+ have noticeable improvements in both accuracy and inference speed.