Knowledge graphs (KGs) have become effective knowledge resources in diverse applications, and knowledge graph embedding (KGE) methods have attracted increasing attention in recent years. However, it's still challenging for conventional KGE methods to handle unseen entities or relations during the model test. Much effort has been made in various fields of KGs to address this problem. In this paper, we use a set of general terminologies to unify these methods and refer to them as Knowledge Extrapolation. We comprehensively summarize these methods classified by our proposed taxonomy and describe their correlations. Next, we introduce the benchmarks and provide comparisons of these methods from aspects that are not reflected by the taxonomy. Finally, we suggest some potential directions for future research.