With the escalating frequency of floods posing persistent threats to human life and property, satellite remote sensing has emerged as an indispensable tool for monitoring flood hazards. SpaceNet8 offers a unique opportunity to leverage cutting-edge artificial intelligence technologies to assess these hazards. A significant contribution of this research is its application of Apache Sedona, an advanced platform specifically designed for the efficient and distributed processing of large-scale geospatial data. This platform aims to enhance the efficiency of error analysis, a critical aspect of improving flood damage detection accuracy. Based on Apache Sedona, we introduce a novel approach that addresses the challenges associated with inaccuracies in flood damage detection. This approach involves the retrieval of cases from historical flood events, the adaptation of these cases to current scenarios, and the revision of the model based on clustering algorithms to refine its performance. Through the replication of both the SpaceNet8 baseline and its top-performing models, we embark on a comprehensive error analysis. This analysis reveals several main sources of inaccuracies. To address these issues, we employ data visual interpretation and histogram equalization techniques, resulting in significant improvements in model metrics. After these enhancements, our indicators show a notable improvement, with precision up by 5%, F1 score by 2.6%, and IoU by 4.5%. This work highlights the importance of advanced geospatial data processing tools, such as Apache Sedona. By improving the accuracy and efficiency of flood detection, this research contributes to safeguarding public safety and strengthening infrastructure resilience in flood-prone areas, making it a valuable addition to the field of remote sensing and disaster management.