Understanding humor is critical to creative language modeling with many applications in human-AI interaction. However, due to differences in the cognitive systems of the audience, the perception of humor can be highly subjective. Thus, a given passage can be regarded as funny to different degrees by different readers. This makes training humorous text recognition models that can adapt to diverse humor preferences highly challenging. In this paper, we propose the FedHumor approach to recognize humorous text contents in a personalized manner through federated learning (FL). It is a federated BERT model capable of jointly considering the overall distribution of humor scores with humor labels by individuals for given texts. Extensive experiments demonstrate significant advantages of FedHumor in recognizing humor contents accurately for people with diverse humor preferences compared to 9 state-of-the-art humor recognition approaches.