Recognizing kinship - a soft biometric with vast applications - in photos has piqued the interest of many machine vision researchers. The large-scale Families In the Wild (FIW) database promoted the problem by supporting annual kinship-based vision challenges that saw consistent performance improvements. We have now begun to approach performance levels for image-based systems acceptable for practical use - something unforeseeable a decade ago. However, biometric systems can benefit from multi-modal perspectives, as information contained in multimedia can add to and complement that of still images. Thus, we aim to narrow the gap from research-to-reality by extending FIW with multimedia data (i.e., video, audio, and contextual transcripts). Specifically, we introduce the first large-scale dataset for recognizing kinship in multimedia, the FIW in Multimedia (FIW-MM) database. We utilize automated machinery to collect, annotate, and prepare the data with minimal human input and no financial cost. This large-scale, multimedia corpus allows problem formulations to follow more realistic template-based protocols. We show significant improvements in benchmarks for multiple kin-based tasks when additional media-types are added. Experiments provide insights by highlighting edge cases to inspire future research and areas of improvement. Emphasis is put on short and long-term research directions, with the overarching intent to increase the potential of systems built to automatically detect kinship in multimedia. Furthermore, we expect a broader range of researchers with recognition tasks, generative modeling, speech understanding, and nature-based narratives.