This study focuses on the evaluation of Open Question Answering (Open-QA) tasks, which have become vital in the realm of artificial intelligence. Current automatic evaluation methods have shown limitations, indicating that human evaluation still remains the most reliable approach. We introduce a new task, QA Evaluation (QA-Eval), designed to assess the accuracy of AI-generated answers in relation to standard answers within Open-QA. Our evaluation of these methods utilizes human-annotated results, and we employ accuracy and F1 score to measure their performance. Specifically, the work investigates methods that show high correlation with human evaluations, deeming them more reliable. We also discuss the pitfalls of current methods, such as their inability to accurately judge responses that contain excessive information. The dataset generated from this work is expected to facilitate the development of more effective automatic evaluation tools. We believe this new QA-Eval task and corresponding dataset will prove valuable for future research in this area.