In Earth Observation Satellite Networks (EOSNs) with a large number of battery-carrying satellites, proper power allocation and task scheduling are crucial to improving the data offloading efficiency. As such, we jointly optimize power allocation and task scheduling to achieve energy-efficient data offloading in EOSNs, aiming to balance the objectives of reducing the total energy consumption and increasing the sum weights of tasks. First, we derive the optimal power allocation solution to the joint optimization problem when the task scheduling policy is given. Second, leveraging the conflict graph model, we transform the original joint optimization problem into a maximum weight independent set problem when the power allocation strategy is given. Finally, we utilize the genetic framework to combine the above special solutions as a two-layer solution for the joint optimization problem. Simulation results demonstrate that our proposed solution can properly balance the sum weights of tasks and the total energy consumption, achieving superior system performance over the current best alternatives.