Pre-trained graph models (PGMs) aim to capture transferable inherent structural properties and apply them to different downstream tasks. Similar to pre-trained language models, PGMs also inherit biases from human society, resulting in discriminatory behavior in downstream applications. The debiasing process of existing fair methods is generally coupled with parameter optimization of GNNs. However, different downstream tasks may be associated with different sensitive attributes in reality, directly employing existing methods to improve the fairness of PGMs is inflexible and inefficient. Moreover, most of them lack a theoretical guarantee, i.e., provable lower bounds on the fairness of model predictions, which directly provides assurance in a practical scenario. To overcome these limitations, we propose a novel adapter-tuning framework that endows pre-trained graph models with provable fairness (called GraphPAR). GraphPAR freezes the parameters of PGMs and trains a parameter-efficient adapter to flexibly improve the fairness of PGMs in downstream tasks. Specifically, we design a sensitive semantic augmenter on node representations, to extend the node representations with different sensitive attribute semantics for each node. The extended representations will be used to further train an adapter, to prevent the propagation of sensitive attribute semantics from PGMs to task predictions. Furthermore, with GraphPAR, we quantify whether the fairness of each node is provable, i.e., predictions are always fair within a certain range of sensitive attribute semantics. Experimental evaluations on real-world datasets demonstrate that GraphPAR achieves state-of-the-art prediction performance and fairness on node classification task. Furthermore, based on our GraphPAR, around 90\% nodes have provable fairness.