Embodied visual tracking is to follow a target object in dynamic 3D environments using an agent's egocentric vision. This is a vital and challenging skill for embodied agents. However, existing methods suffer from inefficient training and poor generalization. In this paper, we propose a novel framework that combines visual foundation models (VFM) and offline reinforcement learning (offline RL) to empower embodied visual tracking. We use a pre-trained VFM, such as ``Tracking Anything", to extract semantic segmentation masks with text prompts. We then train a recurrent policy network with offline RL, e.g., Conservative Q-Learning, to learn from the collected demonstrations without online agent-environment interactions. To further improve the robustness and generalization of the policy network, we also introduce a mask re-targeting mechanism and a multi-level data collection strategy. In this way, we can train a robust tracker within an hour on a consumer-level GPU, e.g., Nvidia RTX 3090. Such efficiency is unprecedented for RL-based visual tracking methods. We evaluate our tracker on several high-fidelity environments with challenging situations, such as distraction and occlusion. The results show that our agent outperforms state-of-the-art methods in terms of sample efficiency, robustness to distractors, and generalization to unseen scenarios and targets. We also demonstrate the transferability of the learned tracker from the virtual world to real-world scenarios.