Sequence-to-sequence (seq2seq) problems such as machine translation are bidirectional, which naturally derive a pair of directional tasks and two directional learning signals. However, typical seq2seq neural networks are {\em simplex} that only model one unidirectional task, which cannot fully exploit the potential of bidirectional learning signals from parallel data. To address this issue, we propose a {\em duplex} seq2seq neural network, REDER (Reversible Duplex Transformer), and apply it to machine translation. The architecture of REDER has two ends, each of which specializes in a language so as to read and yield sequences in that language. As a result, REDER can simultaneously learn from the bidirectional signals, and enables {\em reversible machine translation} by simply flipping the input and output ends, Experiments on widely-used machine translation benchmarks verify that REDER achieves the first success of reversible machine translation, which helps obtain considerable gains over several strong baselines.