In recent years, with the prevalence of social media and smart devices, people causally reveal their locations such as shops, hotels, and restaurants in their tweets. Recognizing and linking such fine-grained location mentions to well-defined location profiles are beneficial for retrieval and recommendation systems. Prior studies heavily rely on hand-crafted linguistic features. Recently, deep learning has shown its effectiveness in feature representation learning for many NLP tasks. In this paper, we propose DLocRL, a new Deep pipeline for fine-grained Location Recognition and Linking in tweets. DLocRL leverages representation learning, semantic composition, attention and gate mechanisms to exploit semantic context features for location recognition and linking. Furthermore, a novel post-processing strategy, named Geographical Pair Linking, is developed to improve the linking performance. In this way, DLocRL does not require hand-crafted features. The experimental results show the effectiveness of DLocRL on fine-grained location recognition and linking with a real-world Twitter dataset.