Due to the open communications environment in wireless channels, wireless networks are vulnerable to jamming attacks. However, existing approaches for jamming rely on knowledge of the legitimate users' (LUs') channels, extra jamming power, or both. To raise concerns about the potential threats posed by illegitimate intelligent reflecting surfaces (IRSs), we propose an alternative method to launch jamming attacks on LUs without either LU channel state information (CSI) or jamming power. The proposed approach employs an adversarial IRS with random phase shifts, referred to as a "disco" IRS (DIRS), that acts like a "disco ball" to actively age the LUs' channels. Such active channel aging (ACA) interference can be used to launch jamming attacks on multi-user multiple-input single-output (MU-MISO) systems. The proposed DIRS-based fully-passive jammer (FPJ) can jam LUs with no additional jamming power or knowledge of the LU CSI, and it can not be mitigated by classical anti-jamming approaches. A theoretical analysis of the proposed DIRS-based FPJ that provides an evaluation of the DIRS-based jamming attacks is derived. Based on this detailed theoretical analysis, some unique properties of the proposed DIRS-based FPJ can be obtained. Furthermore, a design example of the proposed DIRS-based FPJ based on one-bit quantization of the IRS phases is demonstrated to be sufficient for implementing the jamming attack. In addition, numerical results are provided to show the effectiveness of the derived theoretical analysis and the jamming impact of the proposed DIRS-based FPJ.