Deep learning (DL) methods have been extensively employed in magnetic resonance imaging (MRI) reconstruction, demonstrating remarkable performance improvements compared to traditional non-DL methods. However, recent studies have uncovered the susceptibility of these models to carefully engineered adversarial perturbations. In this paper, we tackle this issue by leveraging diffusion models. Specifically, we introduce a defense strategy that enhances the robustness of DL-based MRI reconstruction methods through the utilization of pre-trained diffusion models as adversarial purifiers. Unlike conventional state-of-the-art adversarial defense methods (e.g., adversarial training), our proposed approach eliminates the need to solve a minimax optimization problem to train the image reconstruction model from scratch, and only requires fine-tuning on purified adversarial examples. Our experimental findings underscore the effectiveness of our proposed technique when benchmarked against leading defense methodologies for MRI reconstruction such as adversarial training and randomized smoothing.