https://github.com/ViTAE-Transformer/DeepSolo}.
End-to-end text spotting aims to integrate scene text detection and recognition into a unified framework. Dealing with the relationship between the two sub-tasks plays a pivotal role in designing effective spotters. Although Transformer-based methods eliminate the heuristic post-processing, they still suffer from the synergy issue between the sub-tasks and low training efficiency. In this paper, we present DeepSolo, a simple DETR-like baseline that lets a single decoder with explicit points solo for text detection and recognition simultaneously and efficiently. Technically, for each text instance, we represent the character sequence as ordered points and model them with learnable explicit point queries. After passing a single decoder, the point queries have encoded requisite text semantics and locations. Furthermore, we show the surprisingly good extensibility of our method, in terms of character class, language type, and task. On the one hand, DeepSolo not only performs well in English scenes but also masters the Chinese transcription with complex font structure and a thousand-level character classes. On the other hand, based on the extensibility of DeepSolo, we launch DeepSolo++ for multilingual text spotting, making a further step to let Transformer decoder with explicit points solo for multilingual text detection, recognition, and script identification all at once. Extensive experiments on public benchmarks demonstrate that our simple approach achieves better training efficiency compared with Transformer-based models and outperforms the previous state-of-the-art. In addition, DeepSolo and DeepSolo++ are also compatible with line annotations, which require much less annotation cost than polygons. The code is available at \url{