This study introduces the Hybrid Multi-modal VGG (HM-VGG) model, a cutting-edge deep learning approach for the early diagnosis of glaucoma. The HM-VGG model utilizes an attention mechanism to process Visual Field (VF) data, enabling the extraction of key features that are vital for identifying early signs of glaucoma. Despite the common reliance on large annotated datasets, the HM-VGG model excels in scenarios with limited data, achieving remarkable results with small sample sizes. The model's performance is underscored by its high metrics in Precision, Accuracy, and F1-Score, indicating its potential for real-world application in glaucoma detection. The paper also discusses the challenges associated with ophthalmic image analysis, particularly the difficulty of obtaining large volumes of annotated data. It highlights the importance of moving beyond single-modality data, such as VF or Optical Coherence Tomography (OCT) images alone, to a multimodal approach that can provide a richer, more comprehensive dataset. This integration of different data types is shown to significantly enhance diagnostic accuracy. The HM- VGG model offers a promising tool for doctors, streamlining the diagnostic process and improving patient outcomes. Furthermore, its applicability extends to telemedicine and mobile healthcare, making diagnostic services more accessible. The research presented in this paper is a significant step forward in the field of medical image processing and has profound implications for clinical ophthalmology.