enhancements.In our approach, the autonomous driving decision-making conundrum is conceptualized as a Constrained Markov Decision Process (CMDP). We have crafted an Actor-Critic framework, wherein the diffusion model is employed as the actor,facilitating policy exploration and learning. The integration of safety constraints in the CMDP and the adoption of a Lagrangian relaxation-based policy optimization technique ensure enhanced decision safety. A PID controller is employed for the stable updating of model parameters. The effectiveness of DDM-Lag is evaluated through different driving tasks, showcasing improvements in decision-making safety and overall performance compared to baselines.
Decision-making stands as a pivotal component in the realm of autonomous vehicles (AVs), playing a crucial role in navigating the intricacies of autonomous driving. Amidst the evolving landscape of data-driven methodologies, enhancing decision-making performance in complex scenarios has emerged as a prominent research focus. Despite considerable advancements, current learning-based decision-making approaches exhibit potential for refinement, particularly in aspects of policy articulation and safety assurance. To address these challenges, we introduce DDM-Lag, a Diffusion Decision Model,augmented with Lagrangian-based safety