Backdoor attacks have been shown to be a serious security threat against deep learning models, and detecting whether a given model has been backdoored becomes a crucial task. Existing defenses are mainly built upon the observation that the backdoor trigger is usually of small size or affects the activation of only a few neurons. However, the above observations are violated in many cases especially for advanced backdoor attacks, hindering the performance and applicability of the existing defenses. In this paper, we propose a backdoor defense DTInspector built upon a new observation. That is, an effective backdoor attack usually requires high prediction confidence on the poisoned training samples, so as to ensure that the trained model exhibits the targeted behavior with a high probability. Based on this observation, DTInspector first learns a patch that could change the predictions of most high-confidence data, and then decides the existence of backdoor by checking the ratio of prediction changes after applying the learned patch on the low-confidence data. Extensive evaluations on five backdoor attacks, four datasets, and three advanced attacking types demonstrate the effectiveness of the proposed defense.