Generic object detection has been immensely promoted by the development of deep convolutional neural networks in the past decade. However, in the domain shift circumstance, the changes in weather, illumination, etc., often cause domain gap, and thus performance drops substantially when detecting objects from one domain to another. Existing methods on this task usually draw attention on the high-level alignment based on the whole image or object of interest, which naturally, cannot fully utilize the fine-grained channel information. In this paper, we realize adaptation from a thoroughly different perspective, i.e., channel-wise alignment. Motivated by the finding that each channel focuses on a specific pattern (e.g., on special semantic regions, such as car), we aim to align the distribution of source and target domain on the channel level, which is finer for integration between discrepant domains. Our method mainly consists of self channel-wise and cross channel-wise alignment. These two parts explore the inner-relation and cross-relation of attention regions implicitly from the view of channels. Further more, we also propose a RPN domain classifier module to obtain a domain-invariant RPN network. Extensive experiments show that the proposed method performs notably better than existing methods with about 5% improvement under various domain-shift settings. Experiments on different task (e.g. instance segmentation) also demonstrate its good scalability.