In recent years, attention mechanisms have demonstrated significant potential in the field of graph representation learning. However, while variants of attention-based GNNs are setting new benchmarks for numerous real-world datasets, recent works have pointed out that their induced attentions are less robust and generalizable against noisy graphs due to the lack of direct supervision. In this paper, we present a new framework that utilizes the tool of causality to provide a powerful supervision signal for the learning process of attention functions. Specifically, we estimate the direct causal effect of attention on the final prediction and then maximize such effect to guide attention to attend to more meaningful neighbors. Our method can serve as a plug-and-play module for any canonical attention-based GNNs in an end-to-end fashion. Extensive experiments on a wide range of benchmark datasets illustrated that, by directly supervising attention with our method, the model is able to converge faster with a clearer decision boundary, and thus yields better performances.