Existing scene text detection methods typically rely on extensive real data for training. Due to the lack of annotated real images, recent works have attempted to exploit large-scale labeled synthetic data (LSD) for pre-training text detectors. However, a synth-to-real domain gap emerges, further limiting the performance of text detectors. Differently, in this work, we propose \textbf{FreeReal}, a real-domain-aligned pre-training paradigm that enables the complementary strengths of both LSD and unlabeled real data (URD). Specifically, to bridge real and synthetic worlds for pre-training, a novel glyph-based mixing mechanism (GlyphMix) is tailored for text images. GlyphMix delineates the character structures of synthetic images and embeds them as graffiti-like units onto real images. Without introducing real domain drift, GlyphMix freely yields real-world images with annotations derived from synthetic labels. Furthermore, when given free fine-grained synthetic labels, GlyphMix can effectively bridge the linguistic domain gap stemming from English-dominated LSD to URD in various languages. Without bells and whistles, FreeReal achieves average gains of 4.56\%, 3.85\%, 3.90\%, and 1.97\% in improving the performance of DBNet, PANet, PSENet, and FCENet methods, respectively, consistently outperforming previous pre-training methods by a substantial margin across four public datasets. Code will be released soon.