Recently, pre-trained language models like BERT have shown promising performance on multiple natural language processing tasks. However, the application of these models has been limited due to their huge size. To reduce its size, a popular and efficient way is quantization. Nevertheless, most of the works focusing on BERT quantization adapted primary linear clustering as the quantization scheme, and few works try to upgrade it. That limits the performance of quantization significantly. In this paper, we implement k-means quantization and compare its performance on the fix-precision quantization of BERT with linear quantization. Through the comparison, we verify that the effect of the underlying quantization scheme upgrading is underestimated and there is a huge development potential of k-means quantization. Besides, we also compare the two quantization schemes on ALBERT models to explore the robustness differences between different pre-trained models.